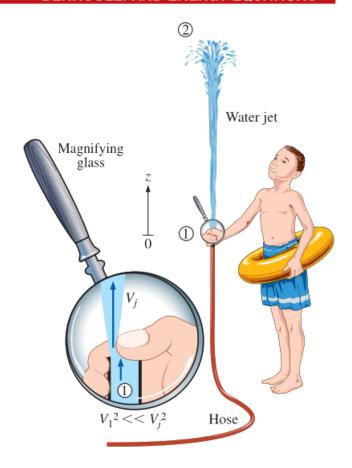
## BERNOULLI AND ENERGY EQUATIONS



Schematic for Example 5–5. Inset shows a magnified view of the hose outlet region.

**Assumptions** 1 The flow exiting into the air is steady, incompressible, and irrotational (so that the Bernoulli equation is applicable). 2 The surface tension effects are negligible. 3 The friction between the water and air is negligible. 4 The irreversibilities that occur at the outlet of the hose due to abrupt contraction are not taken into account.

**Properties** We take the density of water to be 1000 kg/m<sup>3</sup>.

**Analysis** This problem involves the conversion of flow, kinetic, and potential energies to each other without involving any pumps, turbines, and wasteful components with large frictional losses, and thus it is suitable for the use of the Bernoulli equation. The water height will be maximum under the stated assumptions. The velocity inside the hose is relatively low  $(V_1^2 << V_j^2)$ , and thus  $V_1 \cong 0$  compared to  $V_j$  and we take the elevation just below the hose outlet as the reference level  $(z_1 = 0)$ . At the top of the water trajectory  $V_2 = 0$ , and atmospheric pressure pertains. Then the Bernoulli equation along a streamline from 1 to 2 simplifies to

$$\frac{P_{1}}{\rho g} + \frac{y_{1}^{2}}{2g} + z_{1}^{2} = \frac{P_{2}}{\rho g} + \frac{y_{2}^{2}}{2g} + z_{2} \rightarrow \frac{P_{1}}{\rho g} = \frac{P_{\text{atm}}}{\rho g} + z_{2}$$

Solving for  $z_2$  and substituting,

$$z_2 = \frac{P_1 - P_{\text{atm}}}{\rho g} = \frac{P_{1, \text{ gage}}}{\rho g} = \frac{400 \text{ kPa}}{(1000 \text{ kg/m}^3)(9.81 \text{ m/s}^2)} \left(\frac{1000 \text{ N/m}^2}{1 \text{ kPa}}\right) \left(\frac{1 \text{ kg·m/s}^2}{1 \text{ N}}\right)$$
$$= 40.8 \text{ m}$$

Therefore, the water jet can rise as high as 40.8 m into the sky in this case. **Discussion** The result obtained by the Bernoulli equation represents the upper limit and should be interpreted accordingly. It tells us that the water cannot possibly rise more than 40.8 m, and, in all likelihood, the rise will be much less than 40.8 m due to irreversible losses that we neglected.

## Spraying Water into the Air

Water is flowing from a hose attached to a water main at 400 kPa gage (Fig. 5–38). A child places his thumb to cover most of the hose outlet, causing a thin jet of high-speed water to emerge. If the hose is held upward, what is the maximum height that the jet could achieve?

**SOLUTION** Water from a hose attached to the water main is sprayed into the air. The maximum height the water jet can rise is to be determined.

Assumptions 1 The flow exiting into the air is steady, incompressible, and irrotational (so that the Bernoulli equation is applicable). 2 The water pressure

in the hose near the outlet is equal to the water main pressure. **3** The surface tension effects are negligible. **4** The friction between the water and air is negligible. **5** The irreversibilities that may occur at the outlet of the hose due to abrupt expansion are negligible.

**Properties** We take the density of water to be 1000 kg/m<sup>3</sup>.

**Analysis** This problem involves the conversion of flow, kinetic, and potential energies to each other without involving any pumps, turbines, and wasteful components with large frictional losses, and thus it is suitable for the use of the Bernoulli equation. The water height will be maximum under the stated assumptions. The velocity inside the hose is relatively low ( $V_1 \cong 0$ ) and we take the hose outlet as the reference level ( $z_1 = 0$ ). At the top of the water trajectory  $V_2 = 0$ , and atmospheric pressure pertains. Then the Bernoulli equation simplifies to

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2 \rightarrow \frac{P_1}{\rho g} = \frac{P_{\text{atm}}}{\rho g} + z_2$$

Solving for  $z_2$  and substituting,

$$z_2 = \frac{P_1 - P_{\text{atm}}}{\rho g} = \frac{P_{1, \text{ gage}}}{\rho g} = \frac{400 \text{ kPa}}{(1000 \text{ kg/m}^3)(9.81 \text{ m/s}^2)} \left(\frac{1000 \text{ N/m}^2}{1 \text{ kPa}}\right) \left(\frac{1 \text{ kg} \cdot \text{m/s}^2}{1 \text{ N}}\right)$$
$$= 40.8 \text{ m}$$

Therefore, the water jet can rise as high as 40.8 m into the sky in this case. **Discussion** The result obtained by the Bernoulli equation represents the upper limit and should be interpreted accordingly. It tells us that the water cannot possibly rise more than 40.8 m, and, in all likelihood, the rise will be much less than 40.8 m due to irreversible losses that we neglected.

